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Abstract

We construct infinitely many seven-dimensional Einstein metrics of weak holonomy G2. These metrics
are defined on principal SO(3) bundles over four-dimensional Bianchi IX orbifolds with the Tod–Hitchin
metrics. The Tod–Hitchin metric has an orbifold singularity parametrized by an integer, and is shown to
be similar near the singularity to the Taub-NUT de Sitter metric with a special charge. We show, however,
that the seven-dimensional metrics on the total space are actually smooth. The geodesics on the weak G2
manifolds are discussed. It is shown that the geodesic equation is equivalent to the Hamiltonian equation of
an interacting rigid body system. We also discuss M-theory on the product space of AdS4 and the seven-
dimensional manifolds, and the dual gauge theories in three dimensions.
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1. Introduction

M-theory compactifications on special holonomy manifolds have attracted much attention,
because they preserve some supersymmetry and allow one to examine dynamical aspects of a
large class of supersymmetric gauge theories [1]. For example, it is known that there are eight-
dimensional Ricci flat manifolds with holonomy Sp(2), SU(4) and Spin(7) except for the trivial
one, and M-theory compactifications on them correspond to three-dimensional gauge theories
with N = 3, 2 and 1 supersymmetry, respectively. For a non-compact eight-dimensional special
holonomy manifold, M-theory on it is interpreted as a worldvolume theory on an M2-brane with a
special holonomy manifold as the transverse space. This is closely related to the supersymmetric
M-theory solution AdS4 × M with compact seven-dimensional Einstein manifold M . For weak
G2 manifolds M , namely, 3-Sasakian, Sasaki–Einstein and proper weak G2 manifolds, the
M-theory solutions AdS4×M are AdS/CFT dual toN = 3, 2 and 1 superconformal field theories
on the boundary of AdS4 [2–5]. The brane solution naturally interpolates between AdS4 × M in
the near horizon limit and R1,2

× C(M), where C(M) is the cone over M with the special
holonomy SP(2), SU(4) or Spin(7), and the gauge theories on both sides are related by the RG
flow [6].

In this paper, we construct infinitely many seven-dimensional Einstein metrics admitting
3-Sasakian and proper weak G2 structures.1 These metrics are defined on compact manifolds
Mk parametrized by an integer k ≥ 3: principal SO(3) bundles over four-dimensional Bianchi
IX orbifolds with the Tod–Hitchin metrics [9–11]. The Tod–Hitchin metric has an orbifold
singularity parametrized by the integer k. However, the singularity is resolved by adding the fiber
SO(3), and so the total spaces Mk become smooth manifolds. Our compact manifolds contain
manifolds S7, N 0,1,0 and the squashed S7 as special homogeneous cases for k = 3, 4 [12]. For
generic k, the metrics on Mk are inhomogeneous and admit SO(3)×SO(3) isometry. This implies
that the dual gauge theories in three dimensions are N = 3 supersymmetric with SO(3) flavor
for 3-Sasakian manifolds Mk , andN = 1 supersymmetric with SO(3)× SO(3) flavor for proper
weak G2 manifolds Mk . We examine the geodesics on Mk using a Hamiltonian formulation on
the cotangent bundle T ∗Mk . The geodesic equation is equivalent to the Hamiltonian equation
of an interacting rigid body system. We find some special solutions, which may be useful for
considering the Penrose limit of our metrics.

In the draft [13],2 Grove, Wilking and Ziller proved that 3-Sasakian orbifolds Mk
corresponding to the Tod–Hitchin orbifolds are manifolds with the following properties: (a) for
odd k, they have the same cohomology ring as an S3-bundle over S4, (b) for even k, they have the
same cohomology ring as a general Aloff–Wallach space, (c) in both cases, it carries an invariant
cohomogeneity 1 structure by S3

× S3. In addition, the proper weak G2 orbifolds Mk can also be
made smooth by the method of K. Galicki and S. Salamon [14].3 Our study provides a concrete
procedure for resolving orbifold singularities which is familiar to physicists, and the explicit
forms of the 3-Sasakian and proper weak G2 metrics.

This paper is organized as follows. In Section 2, we introduce the Tod–Hitchin geometry, and
explain the relation to the Atiyah–Hitchin manifold [15]. We show that the Tod–Hitchin geometry
is well approximated by the Taub-NUT de Sitter geometry with a special charge. In Section 3, we

1 Recently, infinitely many Sasaki–Einstein metrics were constructed in [7,8]
2 After submitting this paper to the e-print archives, we received from K. Galicki the draft of a talk given by W. Ziller,

which is referred to in [8]. We thank K. Galicki for this.
3 We thank K. Galicki for pointing this out to us.
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construct infinitely many seven-dimensional Einstein metrics of weak holonomy G2 on compact
manifolds. We also discuss the geodesics on the weak G2 manifolds, in Section 4. In the last
section, we comment on the M-theory solutions AdS4 × Mk and the dual gauge theories in three
dimensions. In Appendix A, we present the anti-self-dual condition for the Bianchi IX Einstein
metric. We summarize the relation between the Tod–Hitchin metric and the Painlevé VI solution
in Appendix B. In Appendix C, the G2 structure of the metric is given.

2. ASD Einstein metrics on the four-dimensional Bianchi IX manifold

In this section, we consider Bianchi IX Einstein metrics with positive cosmological constant.
By using the SO(3) left-invariant 1-forms σi (i = 1, 2, 3), the metric can be written in the form

g = dt2
+ a2(t)σ 2

1 + b2(t)σ 2
2 + c2(t)σ 2

3 . (2.1)

In the biaxial case, the general solution to the Einstein equation Ric(g) = Λg has three
parameters, the mass m, the Nut charge n and the cosmological constant Λ;

g{m,n,Λ} =
r2

− n2

∆(r)
dr2

+
4n2∆(r)
r2 − n2 σ

2
1 + (r2

− n2)(σ 2
2 + σ 2

3 ), (2.2)

where

∆(r) = r2
− 2mr + n2

+ Λ
(

n4
+ 2n2r2

−
1
3

r4
)
. (2.3)

The anti-self-dual (ASD) condition for the Weyl curvature determines m in terms of n and Λ
as

m = −n

(
1 +

4
3
Λn2

)
, (2.4)

in which case

∆(r) =
Λ
3
(r + n)2(r+ − r)(r − r−), r± = n ±

√
4n2 +

3
Λ
. (2.5)

Then the metric (2.2) becomes the ASD Taub-NUT de Sitter metric [16,17] given by

g{n,Λ} =
dr2

F(r)
+ 4n2 F(r)σ 2

1 + (r2
− n2)(σ 2

2 + σ 2
3 ), (2.6)

where

F(r) =
Λ
3

(
r + n

r − n

)
(r+ − r)(r − r−). (2.7)

For Λ = 0, the metric reduces to the ASD Taub-NUT metric [18],

g{n,0} =

(
r − n

r + n

)
dr2

+ 4n2
(

r + n

r − n

)
σ 2

1 + (r2
− n2)(σ 2

2 + σ 2
3 ). (2.8)

We shall now restrict our attention to the metric (2.6) with the special Nut charge

n =

√
3

Λ(k2 − 4)
, (2.9)
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Fig. 1. The relation among metrics.

which is a family of ASD Einstein metrics gk ≡ g
{n=

√
3/Λ(k2−4),Λ}

parametrized by the integer

k ≥ 3. Each metric gk has the following properties (see Fig. 1):

(a) When the coordinate r is taken to lie in the interval n ≤ r ≤ r+, the metric has singularities at
the boundaries; there is an orbifold singularity at r = r+, while there is a curvature singularity
at another boundary r = n.

(b) The metric gives an approximation to the Tod–Hitchin metric.
(c) As k → ∞ and Λ → 0 keeping Λk2

= 3, the metric converges to the ASD Taub-NUT
metric (2.8) with a negative mass parameter (n = 1) which gives the asymptotic form of the
Atiyah–Hitchin hyperkähler metric.

In the following, we will explain these points in some detail. For this purpose, we start
with an explanation of some relevant aspects of the Tod–Hitchin metrics. Tod and Hitchin
constructed a family of ASD Einstein metrics (Tod–Hitchin metrics) on the Bianchi IX orbifold,
parametrized by an integer k ≥ 3 [9–11]. These solutions are written in the triaxial form and have
a compactification as metrics with orbifold singularities. These may be thought of as a resolution
of the curvature singularity in the ASD Taub-NUT de Sitter metric gk . Each Tod–Hitchin metric
gTH

k is given by a solution to the Painlevé VI equation (see Appendix B). For lower k the metric
takes the form [11,16]:

• k = 3

gTH
3 = dt2

+ 4 sin2 tσ 2
1 + 4 sin2

(
2
3
π − t

)
σ 2

2 + 4 sin2
(

t +
2
3
π

)
σ 2

3 , (2.10)

which gives the standard metric on S4 written in the triaxial form;
• k = 4

gTH
4 = dt2

+ sin2 tσ 2
1 + cos2 tσ 2

2 + cos2 2tσ 2
3 , (2.11)

which gives the Fubini–Study metric on CP2.
• k = 6, 8

The metric can be written as

gTH
k = h(r)dr2

+ a2(r)σ 2
1 + b2(r)σ 2

2 + c2(r)σ 2
3 , (2.12)

where the components are given for k = 6 by
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h2
=

3(1 + r + r2)

r (r + 2)2 (2r + 1)2
, a2

=
3(1 + r + r2)

(r + 2) (2r + 1)2
,

b2
=

3r (1 + r + r2)

(r + 2)2 (2r + 1)
, c2

=
3(r2

− 1)2

(1 + r + r2) (r + 2) (2r + 1)
, (2.13)

and for k = 8 by

h2
=

4(1 + r)(3 − 2r + r2)(1 − 2r + 3r2)(1 + 2r + 3r2)

(1 − r) r (1 + r2)(1 + 2r − r2)2 (3 + 2r + r2)2
,

a2
=

4(1 − r)(1 + r)3 (3 − 2r + r2)(1 − 2r + 3r2)

(1 + 2r − r2)(3 + 2r + r2)2 (1 + 2r + 3r2)
,

b2
=

16r (1 − 2r + 3r2)(1 + 2r + 3r2)

(1 + 2r − r2)(3 − 2r + r2)(3 + 2r + r2)2
,

c2
=

4 (1 + r2)(3 − 2r + r2)(1 − 2r − r2)2(1 + 2r + 3r2)

(1 + 2r − r2)2(3 + 2r + r2)2(1 − 2r + 3r2)
. (2.14)

Among the Tod–Hitchin metrics, those with k = 3 and 4 are exceptional, i.e. there is no
singularity. The solutions with higher k are determined by the non-trivial solutions to the Painlevé
equation, and in the limit k → ∞ together with a suitable scaling of Λ the solution approaches
the Atiyah–Hitchin metric. In the paper [11], Hitchin found a systematic algebraic way of finding
solutions of the Painlevé equation. However, it is not easy to write down these solutions explicitly.
To examine such a solution, we consider the local metric near the boundary by using expansions
of the solution (2.1) to the Einstein equation.

To begin with, we discuss boundary conditions. Let us impose a compact condition for the
Bianchi IX manifold ' I × SO(3), where I is the closed interval [t1, t2] ⊂ R. Furthermore we
require that singularities at the boundaries, t1 and t2, are described by Bolts or Nuts so that there
are three types, Nut–Nut, Bolt–Nut and Bolt–Bolt. The Tod–Hitchin metric belongs to Bolt–Bolt
type: near t = t1, the metric is written as

gTH
k ∼ dt2

+
4t2

(k − 2)2
σ 2

1 + L2 (σ 2
2 + σ 2

3 ). (2.15)

On the other hand, near t = t2

gTH
k ∼ dt2

+ M2 (σ 2
1 + σ 2

2 )+ 4t2 σ 2
3 . (2.16)

It should be noticed that at one side of the boundaries the coefficient of σ1 vanishes, while at the
other side it is the coefficient of σ3 that vanishes. The constant L in (2.15) is fixed by the ASD
condition as

L2
=

3
Λ

k

k − 2
. (2.17)

We introduce Euler angles (θ, φ, ψ) of SO(3) with the ranges

0 ≤ θ < π, 0 ≤ φ < 2π, 0 ≤ ψ < 2π, (2.18)

so that

σ1 = dψ + cos θdφ, (2.19)
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σ2 = cosψdθ + sinψ sin θdφ, (2.20)

σ3 = − sinψdθ + cosψ sin θdφ. (2.21)

From (2.16) the Tod–Hitchin metric behaves near t = t1, with fixed θ and φ, as

gTH
k ∼ dt2

+
t2

(k − 2)2
d(2ψ)2. (2.22)

Therefore, the metric has an orbifold singularity with angle 2π/(k − 2) around RP2 when we
impose the Z2 identification ψ ≡ ψ + π . Similar arguments require further Z2 identification
at the other endpoint t = t2, and then the metric extends smoothly over RP2 at t = t2.
Thus, the principal orbits are SO(3)/Z2 × Z2 and the Tod–Hitchin metrics are defined on
RP2

∪ [(t1, t2) × SO(3)/(Z2 × Z2)] ∪ RP2, which is topologically equivalent to S4 [11,16].
The Taub-NUT de Sitter metric gk near the boundary r = r+ coincides with the asymptotic form
(2.15), on setting t =

∫ r+

r (1/
√

F(r))dr . However, the metric on the other boundary r = n is
different from (2.16), and turns out to have the curvature singularity. The higher order expansions
with the initial conditions (2.15) and (2.16) reveal the further structure of the Tod–Hitchin metric.

Using the Einstein equation (see Appendix A), we find the following asymptotic behavior of
the Tod–Hitchin metric in the form (2.1) near the boundary:

(1) Near t = t1

a(t) ∼
2t

k − 2
+

∞∑
j=1

a2 j+1t2 j+1,

b(t) ∼ L +

∞∑
j=1

b2 j t
2 j

+ δ tk−2

(
1 +

∞∑
n=1

δn tn

)
,

c(t) ∼ L +

∞∑
j=1

b2 j t
2 j

+ δ tk−2

(
−1 +

∞∑
n=1

δ̂n tn

)
.

(2.23)

Here the expansion includes one free parameter δ, and the remaining coefficients are
determined by k, δ and L (see (2.17)). In this expansion, the terms multiplied by δ represent
the deviation from the biaxial form. It should be noticed that the deviation is “small” because
of the presence of the suppression factor tk−2.4

(2) Near t = t2

a(t) ∼ M + a1t +

∞∑
j=2

a j t
j ,

b(t) ∼ M − a1t +

∞∑
j=2

b j t
j .

c(t) ∼ 2t +

∞∑
j=1

c2 j+1t2 j+1.

(2.24)

4 In [19], it was shown that there exists a similar expansion to (2.23) for a certain class of higher dimensional Einstein
metrics.
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Fig. 2. An illustration of the Tod–Hitchin metric.

Here the expansion includes one free parameter M , and the ASD condition requires

a2
1 =

1
4

+
M2Λ
12

. (2.25)

The remaining coefficients are successively determined.

The Tod–Hitchin metric corresponds to that with a certain value δ in (2.23) or M in (2.24); the
determination of these values requires the global information connecting the local solutions near
the boundaries, which is lacking in our analysis (see Fig. 2). In particular, for the exact solutions
(2.10)–(2.14), the parameters (δ,M,Λ) are given by

(a) k = 3: (1,
√

3, 3), 0 ≤ t ≤ π/3.
(b) k = 4: (3/4, 1/

√
2, 6), 0 ≤ t ≤ π/4.

(c) k = 6: (5
√

6/72, 1/
√

3, 3), 0 ≤ r ≤ ∞.
(d) k = 8: (63

√
3/2048,

√
3 − 2

√
2, 3),

√
2 − 1 ≤ r ≤ 1.

When we consider the case with large k, the expansion (2.23) implies that the biaxial solutions
approximate well the Tod–Hitchin metrics near the boundary t = t1. We find that the ASD Taub-
NUT de Sitter solution gk exactly reproduces the expansion (2.23) with δ = 0. In the limit
k → ∞, Eq. (2.23) yields b(t) ∼ c(t), which is consistent with the asymptotic behavior of
the Atiyah–Hitchin metric. Indeed, the Atiyah–Hitchin metric behaves like the ASD Taub-NUT
metric with exponentially small corrections [20].

The Atiyah–Hitchin manifold is identified as the moduli space of the three-dimensional
N = 4 SU(2) gauge theory [21,22]. The vacuum expectation values of bosonic fields of
the theory, three SO(3) scalars φi and one scalar σ dual of the photon, parametrize the
Atiyah–Hitchin manifold. The hyperkähler structure of the Atiyah–Hitchin manifold ensures
the N = 4 supersymmetry. In the region of large 〈φi 〉, the monopole correction is suppressed
and the moduli are well approximated by the Taub-NUT geometry with a negative charge. On
the other hand, near the origin, the Tod–Hitchin geometry provides a good approximation even
if k is small, and thus one can expect the gauge theory near the origin of the moduli to be
well described by that with the Tod–Hitchin geometry as the moduli. In this approximation,
the metric on the moduli becomes simpler but the gauge theory fails to be supersymmetric.
This is because the Tod–Hitchin geometry is not Kähler, while the Atiyah–Hitchin manifold
is hyperkähler. As we have seen, the Tod–Hitchin geometry converges to the Atiyah–Hitchin
manifold in the limit k → ∞ together with Λ → 0. It is interesting to consider the gauge theory
with the Tod–Hitchin geometry as the moduli and to reveal the role of the limit. In this limit, the
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supersymmetry recovers and the moduli becomes non-compact on sending the orbifold
singularity of the Tod–Hitchin geometry to infinity. On the other hand, to study the region near
the orbifold singularity, it will be useful to examine the theory with the Taub-NUT de Sitter
geometry as the moduli. This is left for future investigations.

3. Einstein metrics on compact weak G2 manifolds

In this section we shall describe seven-dimensional geometries based on ASD Bianchi IX
orbifolds Ok with the Tod–Hitchin metrics gTH

k . As discussed in the previous section, the
Tod–Hitchin metric is defined on S4 with an orbifold singularity parametrized by the integer
k. However, we shall show that a principal SO(3) bundle Mk → Ok is actually smooth and the
total space Mk admits Einstein metrics of weak holonomy G2. In this way, we obtain an infinite
series of seven-dimensional compact Einstein manifolds.

Let φ be an SO(3)-connection on Mk ; it is locally written as

φ = s−1 As + s−1ds, s ∈ SO(3). (3.26)

Here, A is an SO(3)-valued local 1-form on Ok and s−1ds is regarded as the Maurer–Cartan
form. We let φi denote the component of the connection with respect to the standard basis {E i

}

of SO(3) which satisfies the Lie bracket relation [E i , E j
] = εi jk Ek . The left-invariant 1-forms

σ̃i are defined by s−1ds = σ̃i E i and so the Eq. (3.26) may be written as φi
= s j i A j

+ σ̃i by
using the adjoint representation s−1 E i s = si j E j . Given a metric α = (αi j ) on SO(3), then the
Kaluza–Klein metric on Mk takes the form

gk = αi jφ
iφ j

+ gTH
k . (3.27)

The Einstein equation can be solved by imposing the following conditions:

(1) Ai is an SO(3) Yang–Mills instanton on Ok .
(2) The metric α has a diagonal form; α = diag(α2

1, α
2
2, α

2
3) where αi are constants.

The instanton is given by the self-dual spin connection, Ai
= −ω0i −

1
2εi jkω jk . Using the

explicit formula (A.4), it is written as Ai
= Kiσi with

K1 = ȧ +
−a2

+ b2
+ c2

2bc
,

K2 = ḃ +
a2

− b2
+ c2

2ac
,

K3 = ċ +
a2

+ b2
− c2

2ab
.

(3.28)

Thus, the seven-dimensional Einstein equations with cosmological constant λ are equivalent to

α4
1 − (α2

2 − α2
3)

2

2α2
1α

2
2α

2
3

+

(
Λ
3

)2

α2
1 = λ, Λ −

1
2

(
Λ
3

)2

(α2
1 + α2

2 + α2
3) = λ, (3.29)

and the two equations with cyclic permutation of α1, α2, α3. These can be solved easily, and one
has two solutions,

α = β` diag(1, 1, 1), β` =
3
`Λ

(3.30)
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with λ = Λ 2`−1
2` (` = 1 or 5). Using the right-invariant 1-forms σ̂i (sds−1

= σ̂i E i ) and the
Tod–Hitchin metric in the form (2.1), we find two types of seven-dimensional Einstein metrics:

g(`)k = dt2
+ a2(t)σ 2

1 + b2(t)σ 2
2 + c2(t)σ 2

3 + β`(Ki (t)σi − σ̂i )
2. (3.31)

The conditions (1) and (2) also induce a G2-structure on Mk as follows: Recall that the G2-
structure is characterized by a global 1-form ω, which is written locally as

ω = θ1
∧ θ2

∧ θ3
+ θ1

∧ (θ4
∧ θ5

+ θ6
∧ θ7)

+ θ2
∧ (θ4

∧ θ6
+ θ7

∧ θ5)+ θ3
∧ (θ4

∧ θ7
+ θ5

∧ θ6), (3.32)

where {θα;α = 1, 2, . . . , 7} is a fixed orthonormal basis of the seven-dimensional metric gdiag
(see Appendix C). The condition of weak holonomy G2 is defined by dω = c ∗ ω where ∗ is
the Hodge star operation associated with gdiag and c is a constant. Under (1) and (2), the weak

G2 condition reproduces the metric (3.31). The holonomy group Hol(ḡ(`)k ) of the metric cone

(C(Mk), ḡ(`)k ) = (R+ × Mk, dτ 2
+ τ 2g(`)k ) is contained in Spin(7) [23,14]:

(A) Hol(ḡ(1)k ) = Sp(2) ⊂ Spin(7) and (Mk, g(1)k ) is a 3-Sasakian manifold.

(B) Hol(ḡ(5)k ) = Spin(7) and (Mk, g(5)k ) is a proper G2 manifold.

We now proceed to a discussion of the metric singularities. The orbifold singularity of the
base space Ok emerges at the boundaries where a certain component of the metric vanishes. To
understand the effect of this singularity in the total space Mk , it is useful to see the behavior
of the metric g(`)k with weak holonomy G2 near boundaries. From (2.23) and (2.24), putting
Ω(k) = k2

+ (k − 2)2 we find

g(`)k → dt2
+

4t2

Ω2(k)
((k − 2)σ1 + kσ̂1)

2

+
`β`k

k − 2
(σ 2

2 + σ 2
3 )+ β`(σ̂

2
2 + σ̂ 2

3 )+
β`

(k − 2)2
(kσ1 − (k − 2)σ̂1)

2 (3.33)

for t → t1, and

g(`)k → dt2
+

t2

25
(σ3 + 3σ̂3)

2

+ M2(σ 2
1 + σ 2

2 )+ β`(σ̂
2
1 + σ̂ 2

2 )+ β`(3σ3 − σ̂3)
2 (3.34)

for t → t2. These expressions correspond to the asymptotic forms (2.15) and (2.16) of the
Tod–Hitchin metric. An important difference is that the collapsing circle is twisted by the fiber
SO(3), which allows us to resolve the orbifold singularity ofOk as shown below. Let us represent
the invariant 1-forms σi , σ̂ j in terms of Euler’s angles:

σ1 = dψ + cos θdφ, σ̂1 = −dφ̂ − cos θ̂dψ̂,

σ2 = cosψdθ + sinψ sin θdφ, σ̂2 = − cos φ̂dθ̂ − sin φ̂ sin θ̂dψ̂,

σ3 = − sinψdθ + cosψ sin θdφ, σ̂3 = − sin φ̂dθ̂ + cos φ̂ sin θ̂dψ̂. (3.35)

The following transformation:

η =
2

Ω(k)
((k − 2)ψ − kφ̂), χ = kψ + (k − 2)φ̂, (3.36)
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yields

g(`)k → dt2
+ t2

(
dη +

2(k − 2)
Ω(k)

cos θdφ −
2k

Ω(k)
cos θ̂dψ̂

)2

+
`β`k

k − 2
(dθ2

+ sin2 θdφ2)+ β`(dθ̂2
+ sin2 θ̂dψ̂2)

+
β`

(k − 2)2
(dχ + k cos θdφ + (k − 2) cos θ̂dψ̂)2 (3.37)

for t → t1. From (3.36) we have dη ∧ dχ = 2(dψ ∧ φ̂). It follows that one can adjust the
ranges of the new angles as 0 ≤ η < 2π , 0 ≤ χ < 4π since Euler’s angles have the ranges
0 ≤ ψ < 2π , 0 ≤ φ̂ < 2π . Thus, the metric g(`)k extends smoothly over the circle bundle T k,k−2

with the squashed metric

gBolt =
`k

k − 2
(dθ2

+ sin2 θdφ2)+ dθ̂2
+ sin2 θ̂dψ̂2

+
1

(k − 2)2
(dχ + k cos θdφ + (k − 2) cos θ̂dψ̂)2 (3.38)

at the boundary t = t1. Also, similar arguments show that the metric extends over T 3,1 at t = t2.

4. Geodesics on weak G2 manifolds

In this section, we consider a Hamiltonian formulation describing geodesics on the weak
G2 manifold Mk . The phase space is the cotangent bundle T ∗Mk with coordinates (xα) =

(t, θ, φ, ψ, θ̂ , φ̂, ψ̂) and their conjugate momenta (pα). The equations for geodesic flow are the
canonical equations on T ∗Mk with Hamiltonian H =

1
2 gαβ pα pβ . Using the metric (3.31), we

may write them explicitly as

H =
1
2

p2
t +

1
2

(
L2

1

a2 +
L2

2

b2 +
L2

3

c2

)
+

1
2β`

(R̂2
1 + R̂2

2 + R̂2
3)

+
1
2

(
K 2

1 R̂2
1

a2 +
K 2

2 R̂2
2

b2 +
K 2

3 R̂2
3

c2

)
+

K1L1 R̂1

a2 +
K2L2 R̂2

b2 +
K3L3 R̂3

c2 . (4.39)

The functions L i and R̂ j are canonically conjugate to σi and σ̂ j , respectively:

L1 = pψ ,

L2 = − cot θ sinψpψ + cosψpθ +
sinψ
sin θ

pφ,

L3 = − cot θ cosψpψ − sinψpθ +
cosψ
sin θ

pφ,

R̂1 = −p
φ̂
,

R̂2 = cot θ̂ sin φ̂ p
φ̂

− cos φ̂ p
θ̂

−
sin φ̂
sin θ

p
ψ̂
,

R̂3 = − cot θ̂ cos φ̂ p
φ̂

− sin φ̂ p
θ̂

+
cos φ̂

sin θ̂
p
ψ̂
, (4.40)
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which satisfy the SO(3) × SO(3) relations, {L i , L j } = −εi jk Lk and {R̂i , R̂ j } = −εi jk R̂k .
We also introduce functions L̂ i and R j by exchanging Euler’s angles, (θ, φ, ψ) ↔ (θ̂ , φ̂, ψ̂).
Then, one can easily show that they express the isometry SO(3) × SO(3) of the metric;
{L i , R j } = {L̂ i , R̂ j } = 0 and hence {H, L̂ i } = {H, R j } = 0. It should be noticed that in
general neither L i nor R̂ j is conserved, although

∑
i L2

i =
∑

i R2
i and

∑
i L̂2

i =
∑

i R̂2
i are

conserved quantities, the second Casimir. The relation between L i (L̂ i ) and Ri (R̂i ) corresponds
to the relation between left and right actions of SO(3). The Hamiltonian equations d f

dτ = { f, H}

are

dL1

dτ
=

(
1

c2 −
1

b2

)
L2L3 −

K2

b2 L3 R̂2 +
K3

c2 L2 R̂3,

dL2

dτ
=

(
1

a2 −
1

c2

)
L3L1 −

K3

c2 L1 R̂3 +
K1

a2 L3 R̂1,

dL3

dτ
=

(
1

b2 −
1

a2

)
L1L2 −

K1

a2 L2 R̂1 +
K2

b2 L1 R̂2, (4.41)

and

dR̂1

dτ
=

((
K3

c

)2

−

(
K2

b

)2
)

R̂2 R̂3 −
K2

b2 R̂3L2 +
K3

c2 R̂2L3,

dR̂2

dτ
=

((
K1

a

)2

−

(
K3

c

)2
)

R̂3 R̂1 −
K3

c2 R̂1L3 +
K1

a2 R̂3L1,

dR̂3

dτ
=

((
K2

b

)2

−

(
K1

a

)2
)

R̂1 R̂2 −
K1

a2 R̂2L1 +
K2

b2 R̂1L2 (4.42)

together with

dt

dτ
= pt ,

dpt

dτ
=

ȧ

a3 L2
1 +

ḃ

b3 L2
2 +

ċ

c3 L2
3

−
K1

a

(
K̇1

a
−

K1ȧ

a2

)
R̂2

1 −
K2

b

(
K̇2

b
−

K2ḃ

b2

)
R̂2

2 −
K3

c

(
K̇3

c
−

K3ċ

c2

)
R̂2

3

−

(
K̇1

a2 − 2
K1ȧ

a3

)
L1 R̂1 −

(
K̇2

b2 − 2
K2ḃ

b3

)
L2 R̂2

−

(
K̇3

c2 − 2
K3ċ

c3

)
L3 R̂3. (4.43)

This system may be regarded as an interacting rigid body system with angular momenta L i
and R̂ j . The moments of inertia are given by (Ii ) = (a, b, c) and ( Îi ) = (a/K1, b/K2, c/K3),
which have a non-trivial time dependence through Eq. (4.43). When we put Ki = 0, the
interaction between L i and R̂ j vanishes. Thus, the angular momenta R̂ j are constants, and the
remaining Eqs. (4.41) and (4.43) describe the geodesics on the Tod–Hitchin manifold [11,20,24].

As a special solution, consider the case L2 = R̂2 = 0 in Eqs. (4.41)–(4.43). Then, the
angular momenta (L1, L3) and (R̂1, R̂3) are constants. If we can find a parameter t0 such that
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a(t0) = c(t0), we have dL2
dτ =

dR̂2
dτ = 0 after setting

K3(t0)L1 R̂3 − K1(t0)L3 R̂1 = 0,

(K 2
1 (t0)− K 2

3 (t0))R̂3 R̂1 − K3(t0)L3 R̂1 + K1(t0)L1 R̂3 = 0. (4.44)

In fact, one can show that the parameter t0 exists from the behavior of the Painlevé VI solution
(see Fig. 2). Finally, the equation pt = 0 requires a further constraint for the angular momenta:

ȧ

a
L2

1 +
ċ

c
L2

3 + K1

(
aΛ
3

+ K1
ȧ

a

)
R̂2

1 + K3

(
aΛ
3

+ K3
ċ

c

)
R̂2

3

+

(
aΛ
3

+ 2K1
ȧ

a

)
L1 R̂1 +

(
aΛ
3

+ 2K3
ċ

c

)
L3 R̂3 = 0, (4.45)

where we have used an identity K̇1 = K̇3 = −aΛ/3 at a = c. If we consider the case R̂1 =

R̂3 = 0, Eq. (4.44) is automatically satisfied, and (4.45) yields (L1/L3)
2

= −(ċ/ȧ)(t0) [24]. As
a result, we find a class of geodesics on Mk . For cases k = 3, 4, 6 and 8 given by (2.10)–(2.14),
the solutions are summarized as follows:

(a) k = 3: t0 = π/6
L1
L3

= ±1, R̂1 = R̂3 = 0,
L1

R̂3
=

R̂1

R̂3
−

√
3, L3

R̂3
= 1 +

√
3,

L1

R̂1
= −2/(1 +

√
3) and −13/(3 + 4

√
3), L3 = R̂3 = 0.

(b) k = 4: t0 = π/6
L1
L3

= ±2, R̂1 = R̂3 = 0,
L1

R̂3
= −

√
3 R̂1

R̂3
,

L3

R̂3
=

√
3/2,

L1

R̂1
=

√
3 and −4

√
3/3, L3 = R̂3 = 0.

(c) k = 6: r0 = 21/3
+ 2−1/3 ∼= 2.05

L1
L3

∼= ±1.92, R̂1 = R̂3 = 0,
L1

R̂1

∼= −1.71 and −1.28, L3 = R̂3 = 0,
L3

R̂3

∼= 0.95 and 1.06, L1 = R̂1 = 0.

(d) k = 8: r0 ∼= 0.55
L1
L3

∼= ±2.21, R̂1 = R̂3 = 0,
L1

R̂1

∼= −1.15, L3

R̂1

∼= ±0.50, R̂3

R̂1

∼= ±0.52,
L1

R̂1

∼= −1.46 and −1.15, L3 = R̂3 = 0,
L3

R̂3

∼= 0.97 and 1.03, L1 = R̂1 = 0.

5. M-theory on AdS4 × Mk

We have constructed infinitely many compact Einstein manifolds Mk , which are 3-Sasakian
manifolds for ` = 1 and proper weak G2 manifolds for ` = 5. The orbifold singularity of the
Tod–Hitchin geometry has been resolved by having additional dimensions, so we can expect
the resolution of the orbifold singularity in the moduli by adding scalars in the corresponding
gauge theory. The resulting seven-dimensional manifolds Mk admit 3-Sasakian or proper weak
G2 structures, and thus the gauge theories are N = 3 supersymmetric for ` = 1, while they are
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N = 1 supersymmetric for ` = 5. It was shown that the manifold M3(` = 1) = N 0,1,0 appears
as the moduli space of anN = 3 gauge theory [25]. We expect the seven-dimensional manifolds
Mk with general k to also emerge as the moduli spaces of three-dimensional N = 3 or N = 1
supersymmetric gauge theories. It is interesting to achieve this and to reveal the role of k from
the viewpoint of gauge theories. Leaving this interesting issue as a future problem, in this section
we consider M-theory on AdS4 × Mk , and apply the AdS/CFT correspondence.

Using the 3-Sasakian or proper weak G2 manifolds Mk , one can construct supersymmetric
M-theory solutions, AdS4 × Mk , which are AdS/CFT dual to three-dimensional superconformal
field theories. The isometry of Mk corresponds to the global symmetry of the dual
superconformal field theories, including the R-symmetry. The manifolds Mk contain S7, N 0,1,0

and squashed S7 (S̃7) as special homogeneous cases: M3(` = 1), M4(` = 1) and M3(` = 5),
respectively. For these cases, the dual three-dimensional gauge theories which flow to the
superconformal field theories at the IR are the N = 8 gauge theory without flavor [2] for
S7 with SO(8) isometry, the N = 3 gauge theory with SU(3) flavor [25,26] for N 0,1,0 with
SU(3) × SU(2) isometry. The squashed S7 admits SO(5) × SO(3) isometry, so the dual theory
is expected to be N = 1 gauge theory with SO(5) × SO(3) flavor. For generic k, because the
metrics on Mk admit SO(3) × SO(3) isometry as shown in Section 4, the gauge theories which
flow to the superconformal field theories at the IR are anN = 3 gauge theory with SO(3) flavors
for ` = 1, and anN = 1 gauge theory with SO(3)× SO(3) flavors for ` = 5. Since it is not easy
to extract the Kaluza–Klein spectrum on Mk as is expected from the analysis in Section 4, we
assume this correspondence here. The UV limit of the theory is described by R1,2

×C(Mk), where
C(Mk) stands for the cone over Mk . The cone metrics are hyperkähler for ` = 1 and Spin(7) for
` = 5. For the homogeneous cases S7, N 0,1,0 and S̃7, the holographic RG flows which interpolate
R1,2

×C(Mk) at UV and AdS4 × Mk at IR are examined in [27]. For general k, the brane solution
which describes the holographic RG flow from R1,2

× C(Mk) at UV to AdS4 × Mk at IR is

g11 = H−
2
3 gR1,2 + H

1
3 ḡ(`)k , F = dvol(R1,2) ∧ dH−1, H = 1 +

(a

r

)6
, (5.46)

where a = (25π2 N )
1
6 `P and ḡ(`)k = dr2

+ r2g(`)k . This corresponds to N coincident M2-branes
at r = 0. For small r , the brane solution (5.46) reduces to the product metric of Mk with cos-
mological constant 1/a2 and AdS4 with 4/a2, and the 4-form strength F = 6dvol(AdS4)/a.
On the other hand, for large r , (5.46) approaches the product metric of R1,2 and C(Mk) without
the 4-form strength. It is interesting to examine the limit, k → ∞ together with Λ → 0, in
which the four-dimensional base space, Tod–Hitchin geometry, converges to the Atiyah–Hitchin
hyperkähler manifold MAH . The limit Λ → 0 corresponds to the limit a → ∞, because the cos-
mological constant λ = Λ 2`−1

2` of Mk is now 1/a2. In this limit, (5.46) approaches the metric on
R1,3

× R3/Z2 × MAH without the 4-form strength because Mk reduces to R3/Z2 × MAH . Apart
from the Z2 factor, this solution can be regarded as an orientifold 6-plane of the IIA superstring
theory [28], and thus the g11 provides an approximation of the orientifold plane.

Infinitely many inhomogeneous Einstein metrics on compact manifolds are derived from
Kerr–de Sitter black holes as the Page limit in [29–31], and those with a Sasaki structure found
in [32] as the Sasaki–Einstein twist in [33]. It is interesting to consider the black hole solutions
corresponding to Mk constructed in this paper. We have discussed the holographic RG flow from
R1,2

× C(Mk) to AdS4 × Mk . In [34], a transition from AdS4 × S̃7 to AdS4 × S7 is discussed.
A similar transition from AdS4 × Mk(` = 5) to AdS4 × Mk(` = 1) is expected. We leave these
issues for future investigations.
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Appendix A. Four-dimensional ASD Einstein manifolds

The Bianchi IX metric is of the form

g = dt2
+ a2(t)σ 2

1 + b2(t)σ 2
2 + c2(t)σ 2

3 , (A.1)

where σi are left-invariant 1-forms on SO(3),

dσi = −
1
2
εi jkσ j ∧ σk . (A.2)

Defining the vielbein

e0
= dt, e1

= aσ1, e2
= bσ2, e3

= cσ3, (A.3)

one evaluates the spin connection as

ω01 = −
ȧ

a
e1, ω12 = −

a2
+ b2

− c2

2abc
e3,

ω02 = −
ḃ

b
e2, ω31 = −

a2
− b2

+ c2

2abc
e2,

ω03 = −
ċ

c
e3, ω23 = −

−a2
+ b2

+ c2

2abc
e1.

(A.4)

The Einstein equations Rαβ = Λδαβ are given by

ä

a
+

b̈

b
+

c̈

c
+ Λ = 0,

ä

a
+

ȧ

a

(
ḃ

b
+

ċ

c

)
−

a4
− (b2

− c2)2

2a2b2c2 + Λ = 0,

b̈

b
+

ḃ

b

(
ȧ

a
+

ċ

c

)
−

b4
− (a2

− c2)2

2a2b2c2 + Λ = 0,

c̈

c
+

ċ

c

(
ȧ

a
+

ḃ

b

)
−

c4
− (a2

− b2)2

2a2b2c2 + Λ = 0. (A.5)

The ASD condition further requires the following equations:

ä

a
+

(
C

ḃ

b
+ B

ċ

c
−

ȧ

bc

)
+

Λ
3

= 0,

b̈

b
+

(
C

ȧ

a
+ A

ċ

c
−

ḃ

ac

)
+

Λ
3

= 0,
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c̈

c
+

(
B

ȧ

a
+ A

ḃ

b
−

ċ

ab

)
+

Λ
3

= 0,

ȧḃ

ab
−

a4
+ b4

− 3c4
+ 2(−a2b2

+ b2c2
+ a2c2)

4a2b2c2 +

(
B

ȧ

a
+ A

ḃ

b
−

ċ

ab

)
+

Λ
3

= 0,

ȧċ

ac
−

a4
− 3b4

+ c4
+ 2(a2b2

+ b2c2
− a2c2)

4a2b2c2 +

(
C

ȧ

a
+ A

ċ

c
−

ḃ

ac

)
+

Λ
3

= 0,

ḃċ

bc
−

−3a4
+ b4

+ c4
+ 2(a2b2

− b2c2
+ a2c2)

4a2b2c2 +

(
C

ḃ

b
+ B

ċ

c
−

ȧ

bc

)
+

Λ
3

= 0, (A.6)

where

A =
−a2

+ b2
+ c2

2abc
, B =

a2
− b2

+ c2

2abc
, C =

a2
+ b2

− c2

2abc
. (A.7)

Appendix B. Tod–Hitchin metric

Tod [9] and Hitchin [10,11] studied the Bianchi IX metric written in the form

gTH
= H(x)

(
dx2

x(1 − x)
+

σ 2
1

Ω1(x)2
+
(1 − x)σ 2

2

Ω2(x)2
+

xσ 2
3

Ω3(x)2

)
. (B.8)

They showed that gTH gives an ASD Einstein metric with positive cosmological constant if the
functions Ωi satisfy a set of first-order equations

Ω ′

1 = −
Ω2Ω3

x(1 − x)
, Ω ′

2 = −
Ω3Ω1

x
, Ω ′

3 = −
Ω1Ω2

1 − x
, (B.9)

where a prime denotes a derivative with respect to x , and the conformal factor H is given by

H = −
8xΩ2

1 Ω2
2 Ω2

3 + 2Ω1Ω2Ω3
{

x(Ω2
1 + Ω2

2 )− (1 − 4Ω2
3 )(Ω

2
2 − (1 − x)Ω2

1 )
}

4
{

xΩ1Ω2 + 2Ω3
(
Ω2

2 − (1 − x)Ω2
1

)}2 . (B.10)

Writing the functions Ω2
i in terms of y(x) as

Ω2
1 =

(y − x)2 y(y − 1)
x(1 − x)

(
z −

1
2(y − 1)

)(
z −

1
2y

)
,

Ω2
2 =

y2(y − 1)(y − x)

x

(
z −

1
2(y − x)

)(
z −

1
2(y − 1)

)
,

Ω2
3 =

(y − 1)2 y(y − x)

(1 − x)

(
z −

1
2y

)(
z −

1
2(y − x)

)
, (B.11)

together with an auxiliary variable

z =
x − 2xy + y2

− 2x(1 − x)y′

4y(y − 1)(y − x)
, (B.12)
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one can reduce the first-order equations (B.9) to a single second-order differential equation, i.e.
Painlevé VI equation:

y′′
=

1
2

(
1
y

+
1

y − 1
+

1
y − x

)
y′2

−

(
1
x

+
1

x − 1
+

1
y − x

)
y′

+
y(y − 1)(y − x)

x2(x − 1)2

(
α + β

x

y2 + γ
x − 1

(y − 1)2
+ δ

x(x − 1)

(y − x)2

)
, (B.13)

with (α, β, γ, δ) = (1/8,−1/8, 1/8, 3/8).

Appendix C. G2-structure

We assume the diagonal form of the Kaluza–Klein metric (3.27),

gdiag = dt2
+ a2(t)σ 2

1 + b2(t)σ 2
2 + b2(t)σ 2

3 + α2
1(φ

1)2 + α2
2(φ

2)2 + α2
3(φ

3)2. (C.14)

Provided the self-dual instanton φi
= s j i A j

+ σ̃i , the curvature Θ i
= dφi

+
1
2εi jkφ

j
∧ φk is

calculated as

Θ i
= −

Λ
3

s j i

(
e0

∧ e j
+

1
2
ε jk`e

k
∧ e`

)
, (C.15)

where (si j ) ∈ SO(3) and {eµ;µ = 0, 1, 2, 3} is the orthonormal basis of the Bianchi IX
metric defined by (A.3). We now introduce an orthonormal basis of the Kaluza–Klein metric:
θ i

= αiφ
i (i = 1, 2, 3) for the fiber metric, and θα (α = 4, 5, 6, 7) are defined by the following

equations:

Θ1
=

Λ
3
(θ4

∧ θ5
+ θ6

∧ θ7), Θ2
=

Λ
3
(θ4

∧ θ6
+ θ7

∧ θ5),

Θ3
=

Λ
3
(θ4

∧ θ7
+ θ5

∧ θ6) (C.16)

and (C.15). Then, the 3-form (3.32) can be written as

ω = α1α2α3φ
1
∧ φ2

∧ φ3
+

3
Λ
(α1φ

1
∧ Θ1

+ α2φ
2
∧ Θ2

+ α3φ
3
∧ Θ3). (C.17)

Thus, the G2-equation dω = c ∗ ω reduces to the algebraic equations

α1 + α2 + α3 =
3c

2Λ

α1α2α3 +
3
Λ
(−α1 + α2 + α3) =

3c

Λ
α2α3, (C.18)

and the two equations obtained by cyclically permuting α1, α2, α3. These reproduce the solution
(3.30) and hence the metric (3.31).
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